

 Navigation

 	
 index

 	
 next |

 	Bricks 1.0 documentation

Welcome to Bricks’s documentation!

Bricks is a Django application that helps you to sort heterogeneous models
applying a set of criteria.

Suppose for example that your site publishes news and videos and you need
to show them on a single page mixed together and sorted by one or more criteria.

Depending on how complex your models and your criteria are, it can get pretty
tricky.

The Basic Usage will guide you through a complete tutorial to explain the
concepts behind Bricks and to show how simple can be to achieve that goal.

Requirements

	Python 2
	>= 2.6

	Python 3
	>= 3.2

	Django
	>= 1.5

Contents

	Getting Started
	Installation

	Configuration

	Basic Usage
	Use Case Scenario

	Setting up a wall

	Render a Wall

	Advanced Usage
	Using a ListBrick

	Filtering a wall

	Handling heterogeneous models

	Adding context to the template

	API Reference
	Classes

	Utilities

	Changelog
	Version 1.1

	Version 1.0

Indices and tables

	Index

	Search Page

 Copyright 2014, Germano Guerrini.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bricks 1.0 documentation

Getting Started

Installation

Use your favorite Python package manager to install the app from PyPI, e.g.

Example:

pip install djangobricks

Configuration

Add djangobricks to the INSTALLED_APPS within your settings file
(usually settings.py).

Example:

INSTALLED_APPS = [
 [...]
 'djangobricks',
]

 Copyright 2014, Germano Guerrini.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bricks 1.0 documentation

Basic Usage

Use Case Scenario

To demonstrate how Bricks works, let’s pretend we run a website that publishes
both news and videos on its homepage, and that it has two tabs to let the user
choose between two different sorting order: descending publication date (newest
first) and descending number of comments (most commented first).

So let’s write some very basic Django models that we are going to use as a
base for out example:

from django.db import models

class News(models.Model):
 title = models.CharField()
 text = models.TextField()
 pub_date = models.DateTimeField()

class Video(models.Model):
 title = models.CharField()
 video = models.FileField()
 pub_date = models.DateTimeField()

class Thread(models.Model):
 """A model that can be generically associated to a news or a video."""
 content_type = models.ForeignKey(ContentType)
 object_id = models.PositiveIntegerField()
 content_object = generic.GenericForeignKey('content_type', 'object_id')
 comments_count = models.PositiveIntegerField(default=0) # Denormalization

class Comment(models.Model):
 thread = models.ForeignKey(Thread, related_name='comments')
 text = models.TextField()
 # Guess other fields

Bricks exposes three main concepts:

Brick

A brick is a container for an instance of a Django model or even a (presumably
small) list of instances.

Its a brick responsibility to wrap a queryset and returns a list of wrapped
objects, to retrieve a value from its content to be used as a sorting key and
finally to render its content.

Bricks offers two classes: SingleBrick
and ListBrick.

Normally, subclasses will only need to override the
template_name attribute
and, in case of a ListBrick subclass,
the get_bricks_for_queryset
class method.

Criterion

A criterion is a proxy for a value of the brick.

If the brick contains a single instance, then it’s usually a property of the
instance itself, otherwise it’s a property of the list.

You can also specify a callable instead of a model property or a default value
if, for example, the value has no meaning for a given model.

It’s important to note that a criterion has no information about the actual
sorting order, so you have to pass that info along using the
SORTING_ASC and the SORTING_DESC constant.

Be sure to check the Criterion class
reference.

Wall

Not surprisingly, a wall is a list of bricks. Mixed with a set of criteria, it
sorts the bricks and can be iterated to get them back.

Setting up a wall

To start, we should create the criteria. They are subclasses of
Criterion:

import datetime

from djangobricks.models import Criterion

CRITERION_PUB_DATE = Criterion('pub_date', default=datetime.datetime.now)
CRITERION_COMMENT_COUNT = Criterion('thread__comment_count', default=0)

Next, we are going to subclass SingleBrick
to create a container for our objects. In this case, we can probably get away
with a single subclass, but for the sake of completeness let’s create a brick
for a each model:

from djangobricks.models import SingleBrick

class NewsBrick(SingleBrick):
 template_name = 'bricks/single/news.html'

class VideoBrick(SingleBrick):
 template_name = 'bricks/single/video.html'

There is also a ListBrick class, but
let’s stick with a simple case for now.

At this point we can create our wall by hand, but let’s use the
BaseWallFactory class instead.

from myapp.models import News, Video

from djangobricks.models import BaseWallFactory

class HomepageWallFactory(BaseWallFactory):
 def get_content(self):
 return (
 (NewsBrick, News.objects.all()),
 (VideoBrick, Video.objects.all())
)

The BaseWallFactory.get_content
method returns an iterable of tuples, where the first element is a
BaseBrick subclass and the second the
queryset whose elements should be rendered using that class.

We are almost there! All we have to do is to create our wall in the view:

from djangobricks.models import SORTING_DESC

def index(request):
 last_content_criteria = (
 (CRITERION_PUB_DATE, SORTING_DESC),
)
 last_content_wall = HomepageWallFactory(last_content_criteria)

 most_commented_criteria = (
 (CRITERION_COMMENT_COUNT, SORTING_DESC),
)
 most_commented_content_wall = HomepageWallFactory(most_commented_criteria)

 context = {
 'last_content_wall': last_content_wall,
 'most_commented_content_wall: most_commented_content_wall
 }
 return render_to_response('index.html', context,
 context_instance=RequestContext(request)))

Render a Wall

Now that we have not one but two walls, we can render them within a Django
template:

{% load bricks %}

{% for brick in last_content_wall %}
 {% render_brick brick %}
{% endfor%}

{% for brick in most_commented_content_wall %}
 {% render_brick brick %}
{% endfor%}

Done!

We covered the basic of Bricks, but it can handle much more complex scenarios.
Be sure to check the Advanced Usage.

 Copyright 2014, Germano Guerrini.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bricks 1.0 documentation

Advanced Usage

Using a ListBrick

Now that you have run through the basics, let’s tackle some more advanced topic.

Building up from our previous example, let’s say that our designers team decided
that the list of videos and news must change. Specifically, the news have a new
layout and they have to be grouped in list of five elements each.

In this case, we are going to use the ListBrick class.

So let’s replace our declaration of NewsBricks:

from djangobricks.models import ListBrick

class NewsBrick(ListBrick):
 template_name = 'bricks/list/news.html

The VideoBrick doesn’t need to be changed.

By default get_bricks_for_queryset
returns a list of bricks containing 5 elements each. Unless you need some more
complicated behaviour, you can simply change the number of elements by setting
the chunk_size attribute
accordingly.

Now, as the brick does not contain a single element, is not clear what a
Criterion should return when applied
to it. The value of the first element? The average? That is really up to you.

In this case, let’s say that we want to change CRITERION_PUB_DATE to return
the max value of the list (that is, the brick will be sorted based on the newest
news it contains) and CRITERION_COMMENT_COUNT to return the average number
of comments.

To do that, we simply change the criteria declaration by adding a callback
function that accepts a list and return a value:

CRITERION_PUB_DATE = Criterion('pub_date', max, default=datetime.datetime.now)
CRITERION_COMMENT_COUNT = Criterion('thread__comment_count',
 lambda x:sum(x)/len(x), default=0)

We don’t need to change anything else.

Filtering a wall

Our designers are relentless. They want the user to be able to filter some
content from the wall. In our simple example, we can say that they want to
hide the videos from the wall.

In this case, we can probably just build a second wall and returns it in our
view depending on user choice, but we are going to do it the Bricks way.

The BaseWall class provides a simple
filter method that accepts a
list of callables that accepts a brick instance and returns a boolean,
and a boolean operator. Each brick is then filtered against the list of
callables: all of them if the operator is AND (the default value)
or any of them if the operator is OR.

In our case, we need a single callback that should return True if the brick
contains some news (remember: we want to hide the videos!) and False otherwise.

Something like this would to the trick:

def is_news_brick(brick):
 return brick.__class__.__name__ == 'NewsBrick'

And in our view:

...
filtered_last_content_wall = last_content_wall.filter(is_news_brick)
...

The advantage of this approach is speed. The creation of a wall can be an expensive
operation. Caching a wall and filtering the cached result can be faster then
building a new wall from scratch, especially if you have a more complicated setup
with a lot of filters.

Handling heterogeneous models

Now let’s say that we need to add another model to our wall, defined below:

from django.db import models

class PhotoGallery(models.Model):
 title = models.CharField()
 images = models.ManyToManyField(Photo)
 public_from_date = models.DateTimeField()

As you can see, this model doesn’t have a pub_date field like News and
Video. How can we use the CRITERION_PUB_DATE over this model?

Remember that is up to the brick to return a value for a given criterion of its
content. So let’s write a brick class for our new model:

from djangobricks.models import SingleBrick

class PhotoGalleryBrick(SingleBrick):
 template_name = 'bricks/single/photo_gallery.html'

 def get_value_for_criterion(self, criterion):
 if criterion.attrname == 'pub_date':
 return self.item.public_from_date
 return super(PhotoGalleryBrick, self).get_value_for_criterion(criterion)

And that’s it! Unless you are sure to cover each possible criterion, it’s a good
practice to return the value from super at least, as shown above.

Adding context to the template

By default, SingleBrick will
pass the object to the context with an object key.

The ListBrick context contains an
object_list key instead.

If you want to add extra context to render the template, you can either
override the get_context
method as show below:

class NewsBrick(SingleBrick):

 def get_context(self, **kwargs)
 context = super(NewsBrick, self).get_context(**kwargs)
 context['color'] = 'red'
 return context

or you can add them using directly the templatetag

{% render_brick brick color='red' %}

 Copyright 2014, Germano Guerrini.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bricks 1.0 documentation

API Reference

Classes

Utilities

 Copyright 2014, Germano Guerrini.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Bricks 1.0 documentation

Changelog

Version 1.1

	Added support for Python >= 3.2

	Minor documentation fixes

Version 1.0

	First version

 Copyright 2014, Germano Guerrini.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Bricks 1.0 documentation

Index

 Copyright 2014, Germano Guerrini.
 Created using Sphinx 1.2.2.

 _static/up-pressed.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/minus.png

_static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		Bricks 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Germano Guerrini.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

